

10th International Workshop on Advanced Ground Penetrating Radar

Using GPR on a problematic agricultural field for groundwater protection in a karst environment

Marjana Zajc & Janko Urbanc, Geological Survey of Slovenia

Introduction

- Problematic agricultural field
- Karst aquifer
- Groundwater vulnerability
- GPR survey
- GPR results
- Borehole televiewer data
- Conclusions

Problematic agricultural field

- Situated in a karst area
- No problems on neighbouring fields (yellow)

Problematic agricultural field

- Situated in a karst area
- No problems on neighbouring fields (yellow)
- Patchy and poor growth despite additional irrigation and fertilization (red)

• Classical karst aquifer:

- important transboundary aquifer
- vital source of drinking water for Slovenia and Italy
- specific hydrogeological conditions
 - complex and heterogenous area
 - high groundwater vulnerability
- remains inadequately protected (Turpaud et al., 2018)

Karst aquifer + agricultural field + pollutants

Goldscheider N, Drew D (eds) (2007) Methods in Karst Hydrogeology. International Contributions to Hydrogeology 26, International Association of Hydrogeologists, Taylor & Francis, London, 264 pp

GPR survey

- 22 GPR profiles across the entire field
- Malå ProEx recording unit,

250MHz, 500 MHz antennas

- Parallel profiles 1 m apart
- Wheel aquisition mode 0.02 m
- Top soil thickness calibration: digging of 5 holes along P7
- Processing in ReflexW Sandmeier
 - Time-zero adjustment
 - DC shift
 - Background removal
 - Gain
 - Bandpass filtering
 - Time-to-depth conversion by hyperbola fitting

GPR results

- Top soil depth (green line), south-dipping discontinuities (black lines), cavities (black frames)
- Transitional boundary between less/more compact limestone (dashed red line)

GPR results

- Top soil depth (green line), south-dipping (black lines) and north-dipping (orange lines) discontinuities, cavities (black frames)
- Transitional boundary between less/more compact limestone (dashed red line)

Borehole televiewer (OBI – optical borehole imager)

- Produces a continuous image of the borehole wall in 360°
- Unwrapped image shows sine wave patterns of dipping discontinuities

Comparison of GPR and borehole televiewer results

GeoZS Geološki zavod Slovenije

limestone bedding

cavities

fractures

Borehole televiewer results

 Schmidt plot of discontinuities in borehole (196 m deep) with average azimuths and dips

Conclusions

- 500 MHz top soil thickness more accurate (32 cm to 17 cm)
- 250 MHz discontinuities more pronounced (different sets)
- Reduced crop growth = thin soil cover + karstified limestone
- GPR results confirmed with borehole logs
- Additional irrigation and fertilization would increase groundwater pollution risk
 -> owner will no longer use this land for agricultural activity
- GPR useful for more accurate groundwater vulnerability and risk assessments

Thank you for your attention.

marjana.zajc@geo-zs.si

